
Applying Formal Methods and Object-Oriented Analysis
to Existing Space Shuttle Software*

Betty II. c+ clleng~ Brent A ucrnllcimcd
Michigan State University California State Univmsity, Frcsno

1 kpartmcnt of Computer Science Dcpartmmnt of Computer Science
East l,ansing, Ml 48824-1027 Prcsno, CA 93740-0109

chengbQcps ,msu. edu brent-auernheimer@ CSUFresno. edu

Abstract

Correctness istllell]ost ililIJortallt isslleill safety-criticals oftwarcc o1ltrolsystcllls. Unfortunately,
failures in critical segments of software for mcxtical radiation treatment, conlnmnicatio]ls, and defense
are familiar to the pub]ic. Such inc.idcmts motivate the use of software development techniques
that reclucc errors and detect defects. ‘1’hc benefits of applying forma] methods in requirenlents-
driven software development (forward engineering) are well-documcmted; formal not ations are precise,
vcriflab]c, ancl facilitate automated processing. ‘1’his paper dcscrit)es the application of formal
methods and object-oricntccl modeling to rcvcrsc engineering, in wllicll formal specifications are
dcvclopcd for existing, or legacy, code. in this project, several layers of formal specifications were
constructed for a portion of the NASA Space Shuttle l)igital Auto l’ilot (I) AI’), a software module
that, is used to control tile position of the sl)ac.ecraft through appropriate jet firings. ‘l’he reverse
cnginccring process was facilitated hy tl]e Objcci Modeling lkchnigue (OMT), an infcmna] software
devcloplnent, approach that uses gral)llic.al notat,ionsto clcscribc software rccluiremcmts.

1 Introduction

Correctness is most important ancl ncx.cssary in safety-critical software contro] syatms [1], Critical

softwa,rcfa,ilures in medical radia,tioll cxluipment [2], collll)lllllica.tiol~ networks, and dofcnsc systems arc

familiar tothepuldic, ‘1’110 large numlm of softwalcIllalfll]lctiolls regularly reported to the software

cmginccring community [3], ncw statutm concerning liability for such failures, and a roc,cnt National

Research Council Acrona.utic,s and Space Enginmring }Ioard Report [4], additionally motivatcthc use

of software dmdopmcmt tcxhniqum that reduce errors and detect defects,

“I’lwwork descril,ed illtliis l,aI,er \vascarriccl out at the Jctl’roplllsion I,aboratory, California Il,stitutc of Tccllnology,
and wasspomorc,d l)y the National Aeronautics and Spacc Aclnlinistration. Additionally, tlieauthors’w orkonthisprojcct
was sul)portcd by NASA/A SEE Sulnlncr Faculty fdlowslli])s, A]Jrelilnillary version of this paprv was prcscntcd at tl~c
NASA/Godclard Software El~gillecrillg Worksho],, (;rccmbdt, Maryland, l)ecemlwr,]993.

t’1’his author isalsosu])portd in part by NSF grant (2 CI{-9209873.
$rJ~}lis a(,t]lor ~ratef,,]]y a,ckllow]c,{lg,c,s t,]i[! Software ~llgillccrillg I,,stit~t~ at ~arll~gi~ Melloll l]niversity for suI)port as

a Visiting %icntist, Spring 1994.

The benefits of using formal methods in requiremcmts-d riven software development (forward engineer-

ing) arc well-documcmted [5, 6], A formal mdhod is daractcrizcd by a formal specification language

and a set of rules governing the manipulation of expressions in that language. ‘1’raditionally, formal

methods have been used in the early phases of development, in order to clcscribc the requirements of a

soft ware systcm or component. Using formal specification languages facilitates the car] y evaluation of

a software design and verification of its implemcmtation through the use of formal reasoning tcc.hniques

[7, 8]. A formal specification can be manipulated, using automated techniques, to enable the designer to

assess ihc consistency, comp]ctcncss, and robustness of a design before it is implcmcntd. FJac.h step in

the dcvclopmcnt process can bc justified by matllematica] proof, thus minimizing the number of errors

duc to IIlisilltcrl}retatioll and ambiguity.

ltc:-e?~gi?lc:er’i?lg is the process of examining, understanding, and modifying a system with the intent

of inlplmnm~ting the systcm in a ncnv form [9]. Re-engiliccring of existing, or Jegaeg, code is prefcrrd

to redeveloping the software from the original rcquircmcnts in order to preserve functionalist y that has

been acllicvcd over a period of time and to provide continuity to currc.nt users of the software [1 O].

Onc of the most diflicu]t aspcds of rc-cngincc:ring is the recognition of the fuliction of the existing

IJrograms. lieverse I;ngineering is the process of constructing high lCVC1 rcprcscntations from lower

lCVCI instantiation of an existing systcm. Common reverse engineering methods used by software

m aintcnan c.e engineers arc+ observation (for example, test case analysis) and examination of source CO(1C.

‘J’llesc txxhniqucs arc often tedious and error-prone.

Onc way to take advantage of the benefits of formal methods in legacy systems, is to reverse engineer

tlic existing program code into formal specifications [11, 12, 1 3]. ‘1’hc resulting formal spcc.ific.at ions

can tllcn be used as the basis for change requests and the foundat ion for subsequent verif icat ion

and validation [1-4]. Considcwing the high cost of rc-illll)lclncl~tatiol~ and the ncwd to prcscrvc critical

functionality, rcvcrsc cnginccring of code into formal specific.ations ofl’crs an alternative to traditional

ad hoc approacl~es to maintaining safdy-critic.al systems.

A highly visible example of a legacy system is the software for the NASA Space Shuttle, which was

conccivcd in the early 1970s and has been opcrationa] for over ten years [4]. Onc component of tllc

Shuttle software is the flight software, which provides guidance, navigation, slid control for the Space

Shuttle while it is in orbit. q’hc navigation function dctcrmincs where. the shuttle is, the guidance

function ddcrmincs where it should go next, and the control function determines lIOW to effect the next

move. While the vehicle is in orbit, the Digital Auto l’ilot (11A]’) software dctcrmincs attitude and

translation] adjustments, based on astronaut selections. A Uzludc refers to the rotational position of

the vehidc in terms of roll, pitch, and yaw, and translation refers to the x, g, and z coordinates of

the vchiclc. Figure 1 gives a pictorial rcprcscntation of translation and attitude as they relate to the

position of the shuttle.

pitch

roll

(P “%3
I

z

Figure 1: Shutt]c ‘.l’ranslational and l{otationa] Axes

l’rcscnt]y, the Space Shutt]c flight software project has a well-ddincd process for managing require-

ments evaluation, This process is rcsponsib]e for ensuring that requirements gencratd hy an engineer are

consistent, implcmcntdde, and will SOIVC the proMen~ at hand. IIowever, this process does not in CIU dc

a well-dcfind set of analytical methods and techniques [1 5, 14]. When a cha.ngc. is nccdcd, a dclailcd

description of the reasons for the change, known as a change request (Cl{.), must be constructed before

the system can be rc-cnginccrd to include the changes. Next, the rcquircmcnts analyst performs an in-

dcpth analysis of the Cl{, guided by a list of generic error catcgorics, followed by a formal inspection of

the Cl{ by several representatives of tlIc software project, including the author of the CR, requirements

analyst, dcvc]opcr, verifier, and so on. Each potential error, termed an issue, that is identified by

the requirements analyst or the inspection process remains ‘(open” until a clearly-described solution

has been developed, at which point the issue is c.onsidercd “closed .“ When all inspect ions have been

conducted for a CR and all issues have been closd, a CR is rca.dy for ill~l)lclnel~tatio]~. At this point,

a baseline for the project, a milestone that describes the current system with the acccptcd changes, is

meat ed and schcdu]cd for implement at ion.

~’he analysis step of the CR process involves studying, understanding, and analyzing the contents of

a CR. Three major deficiencies in this proc.css ha.vc been identified Ly rccjuirwncmts analysts [1 5]. I’imt,

there is no specific mdhodology for conducting tile analysis of tile Cl{. Scc.end, there are no specific

compldion criteria to indicate wlIcw sufllcicwt information has been obtained for the Cl{. ‘1’bird, there

is no specific structured mechanism for documenti]lg the results of the analysis process. Moreover, since

there is no structural approach for documenting the analysis, the understanding of the CR developed

l}y }hc requirements analyst is not formaJly rccordd for future use [1 5].

This paper dcscribcs a projcwt that applies formal methods and ob jcc.t-oriented analysis to a suhsys-

tmn of the 11A]’ of the Shuttle, known as the l’base l’knq which ddcrmincs whdhm jet firings arc

ncdd to achieve tran slationa] or rot ationa] acceleration in a direction spccificd by the crew. More

spccificall y, the Phas eyl ane module was reverse cngillecred through the development of formal speci-

fications that capture the details of Phasellane requirmnents,]n order to facilitate the specification

process, a pictorial description of the subsystem was constructed using the Object Modeling Technique

(OM~’) [16], an informal software dcvdopment approach that uses graphical notations to describe

software requirements,

2’110 remainder of the paper is organizd as follows. Scc.tion 2 gives a brief introduction to formal

methods and object-oriental analysis tecl~niqucs. Section 3 describes the l’hasc Plane project, including

sample specifications and a discussion of tlIc object-oriented ,ana]ysis. IJcssons learned from this project

are described in Section 4, with a summary of the benefits of constructing formal specifications and

t IIe use of oh ject-oriented analysis tcdniqucx in a revcwse engineering project, Finally, conclusions and

future investigations are described in Se.c.tion 5,

2 Background Material

‘J’llis section briefly ddincs and motivates the usc of forlnal methods. Also, the bcmdits of object-oriented

analysis is clisc.ussecl.

2 . 1 l?orn~al Metl~ods

A jmvnal rltetltod consists of a jolw~{il spccijim lion la ngtitigc and a set of jorm(illy defined injerence

rdcs [7]. ‘I’l Ie specification language is uscxl to describe the intended system bd[avior , and the inference

rules provide a sound method for reasoning about the specifications. In general, formal methods in

soft ware development provide man y benefits for forward engineering [5, 7]. First, it forces the designer

to be thorough in the (lcwclopmcnt and the documentation of a systcm design. SCconcl, the dcvclopcr

is a,blc to obtain precise answers to questions posed about the properties of tile systcm. ‘1’bird, the

dcve]opcr is aldc to usc automated reasoning to clcterminc the correctness of the system (or a safety-

critica] component of the systcm) with rcspcc.t to its specification.

Formal reasoning can be divided into two approaches: program verification and progrurn synthesis.

Program verification is the process of checking the semantics of program text against its specification.

A program whose semantics satisfy its specification is said to be correct with respect to the slmcifi-

c.ation, l’rogram synthesis refers to formal techniques for systematically devdoping a program from a

specif icat ion, such that the c.orrectncss of the resultilig program (witli respect to its spcc,ific.atio]l) is

inherent in the dcvclopmcnt process itself [1 7].

2 . 2 O b j e c t - O r i e n t e d A n a l y s i s

Software requirements dcfme the objectives of a software development effort. They provide the basis

by which the quality of the end-product is mcasurerl and guide the design of the soflware architecture.

~’here arc a variety of approachm to rcquircmcmts analysis, many of them in the broad category known

as object-oriented requirements awlysis (OOA) [1 6], An objxt is a sdf-c.ontaincd module that includes

both the data and proccxlurcs that act on that data. ‘J’he emphasis on objects and their interactions

in 00A is in contrast to the more traditional approach to software dcwelopmcnt, which focuses on

proced u rcs,

Most 00A techniques begin by a careful assessment of the natural language description of the

prohlcm. A silnp]c first step in developing an 00A moclcl is to extract tile nouns from the prolhn

description. Many of these nouns will share common properties and may bc described as instances

of types, or classes. A class is a collection of objects that have common use. For example, G’alilco,

Voyager, and Magelkm are all of the class spacecraft, and Vcnw, Mars, and Mercury are all of the

class planet. Some classes, referred to as subclasses are specializations of other classes. For example,

interplanetary spacecraft is a subclass of spacecraft.]n this manner, 00A is used to organize types into

a class hierarchy based on a isa (as in ‘{an X is a Y“) rdationship.

It may bc natural to think of an object as composed of other objects. For example, an interplanetary

spacecraft maycontain Ilulncrolls jets, agui[lallc.e and navigation control systcm,and aprobctostudy

a planet’s atmosphere. This dcqxmdenc.e introduces an additional dimension of the class hierarchy,

namely, tlic part o~ relation. The parts of an object arc often ca]lcxl its uttributc.s.

As nouns can be USC(1 to identify candidate objects (an(l therefore, classes), verbs typically describe

interactions l~ctweell objects, tl~creforc makingthcm good candidatcwf oropcrations, or mcthods,acting

upon classes. ,Some verbs may dcscribc a service for a particular class of ob jccts, such as fire in the

P]lrasc “fircthcjct,s.” Othm-vmbsmay dcscrilmapossiblc state ofan object, such as coastin thephrasc

“thcspaccc.raftbc gins to coast. “ ~’l~ercforc, vcrbsllelj) to{lcfillc the opcrationso faclassaswd] asthe

dynamic lmhavior of the system as a whole.

in the early stages of software development, including ol~jec.t-oricmtwl approaches, diagrams arc

fre.qucntly used t o dcscrilm rcx]uircnncmts and guide dcwdopmcnt, ‘1’hc OMT []6] notation combines

tlllc!cc ollllJlclIlclltaryfl iaglalnlllillgllot atiollsillor(lcrto(loc lllllclltsystcl llrc(jll irelncllts: objcctmoclds,

dynamic moclds, and functional modc]s. The dcmcnts of a system that define its cwcrall architecture

arc given by an object model, whose notation is similar to that uscxl for cmtity-relationship diagrams

usml in database design. An object model dctcrmincs the typm of objects that can exist in the system

and identifies allowable relationships among objects. As a result, the objcc.t modd constrains the set

of possible states that the systcm may cntcro A dynflmic model describes valid transitions lmtwcwn

systcm states and indica,tm tllc conditions under which a state change may occur. Dynamic models are

dcsc.ribcxl in tcmnsof statetransition diagrams, A j~ll~ction~llnzotlclis ada.taf low diagram that dcsc.libcs

the computations to be performed by the system. Collectively, these three types of diagrams are used to

lnodd the properties of the system, including flow of control, flow of data, patterns of dqxmdencyj time

scquencc, and name-spa,cc relationships. ‘J’he OMrJ’ approach is appealing since it ofrers multip]c views

of software rcxluircmcnts, and sin cc a single not at ion is not forced to describe many different pcnqmctivcs

of a given system, the notation for each type of diagram is silnl)le to usc and easy to understand.

3 Project Description

I)UC to tllc criticality and the volume of flight systcm software, many rcccnt f l ight system projects

arc incorporat ing formal methods into the software dcwclopment process [1, 6]. in order to apply

formal methods to legacy flight software, however, revme enginccwing is nccdcd. ‘J’he project dcscribccl

herein is associated with a larger multi-NASA site project to apply formal mcthocls to a portion of

the flight control software for the NASA Space Shuttle [14, 15]. The project described here uses

formaJ methods and object-oricntwl analysis to rcvcrsc cnginccr the Phasellane module, which is

the subsystem that provides automatic attitude control of the Shuttle. The critm ia that led to the

sc]cct,ion of Phase_Plane included finding a module whose requirements were difficult to understand

and which will likely be the ta.rgct of future critical change requests. The objcctivc of this project is

to provide multiple representations of the rcquircmcnts and functionality of the system, which can bc

USC(1 to facilitate automated verification and validation of future changes and to facilitate rc-cnginccring

tasks.

I’wo major tasks were performed in the dmwlopmcnt of the forlnal specifications of the Phase_P1.ane

high-lcvc] requirements. First, a concise description of the original requirements of the module was

acquircxl. ‘l’his information was obtained from the ltinciional Su@@mZ Software Requirements (FSSR)

document [18] (also known as l,evcl C rcquircmcnts, consisting largely of “wiring” diagrams), the L’uid-

ance and Control Systems Training Manual [19], source c.odo, informal design notes, and discussions with

Shut tlc software personnd, The resulting description was use{] to develop an “a,s-bu ilt,” (illll)lcmelltatioll-

biased) formal specification, capturing the functionality dcpictcd in the 1“SS1{ wiring diagrams.

%cond, in order to obtain a more abstract forlna] sl)ec.iflc.ation and c]ilninatc the ilnl]lclllclltatioll bias

present in the as-built layer, OMT diagrams were developed to rcprcscnt the intcgra,] information from

the low-level specifications. ‘J’hese diagrams facilitated the abstraction process and M to the higher-level

spcc.ifications. I’his process of dcvc]oping a level of formal specification, followed by the construction

of the corresponding OM’I’ diagrams, led to the identification of the high-level, critical rcqui~cmcmts of

the Phasellane mo(lu]e. Sample spcc.ific.ations and OMq’ diagrams arc dc%cribcxl l.mlow,

3 . 1 P]lase P l a n e

‘1’hc ltcaction Control System (RCS) Digitaj Auto l’ilot systcm (I)A1’) achieves and maintains attitude

through an error c.orrcc.tion method, which involves jet firings. A Wudc refers to the rotational position

of the vchic]c in tams of roll, pitch, and yaw. In order to make the Shutt]c maintain a specific attitude,

the crew slmcifics two values: attitude dcdband and rate dcadban[l. A ititudc dcadimncl refers to how

much drift (positive or negative) will be tolc.ra.tcd in any axis before jets are fired to correct the error.

lktc dcadba?ld refers to the allowable rate changes of the attitude (positive or negative) before jet firings

are requirrxl to null the error. 1+’igure 2 gives a high-level view of the I)A}’. The State Fktimator gives

the current attitude, taking into consideration spacecraft dynamics. This information is supp]ic(l to

the Phase_Plane component, which compares the attitude and rate errors (the rate of attitude change)

with the desired (dcmdband) values sl)ecificcl by the crew.

DIGITAL AUTOPILOT (DAP)

------ ------ ------ --,. -.
Desi red ~
state

I I State

Phasos~lane Jet Selection I Spacecraft~ —+
I Logic Dynamics

I

I Estimated I

I state I

1 ’ I

I State
1’

I Io
I Estimator I

I
1

i
- - - - - - - - - - - - - - - - - - - - __.,

Figure 2: IIigh-lcvd view of I)Al’, including the Phase_Plane module

l~i.gnre 3 givm a simplificxl graphica] r e p r e s e n t a t i o n o f the phase plane [1 8]. A pha,sc p l a n e i s

rcprcmntcd as a graph plotting spacecraft rate errors against attitudo errors for one rotational axis,

with a “box’) (with parabol ic sides) drawn around the ccntcr, A separate phase plane exists for each

of tllc vcllicle rotation axes (roll, pitc]l, and yaw). in all attitude hold situation, the error plot c,yclcs

around tllc zero error point with jets firing each tilne the limits of the “hex” arc cxcxxxlecl, q’his activity

is known as “limit cycling” or “{lca(ll~al~(li l~g”. ‘J’hc PhaseYlane module gcncratm positive or negative

rate commands on an axis by axis basis, where the JetSelect component determines which jet(s) to

fire (the topic of the larger multi-NASA site project [1 5]). The shaded coast regions depict, situations,

wllcrc the Shuttle ncxxls no corrective action. ‘J’lic remaining regions arc known as hysteresis regions,

wllcrc cxtcwnal factors, such as positive (negative) acceleratio]l drift, propellant usage, inertia, time lags

l>ctwccm firing commands, and scmsor noise, are taken into consideration in order to preclude unnecessary

jet firings, As such, the hysteresis regions are defined as a ~tinction of jet firings.

]n 1+’igurc 3, the dashed lines outline the deadbanding path, whine cinch “()” indicates points that the

Shuttle is changing state with rcwpcct to thruster firings; in this graph, the Shuttle transitions through

+ rate error

+ rate

+ attitude error

Deadbanding Path

Coast Region
I -\

- rate deadband

n Hysteresis Region

l“igurc 3: Graphical depiction of the pllasc p]a]lc, with coast and IIystcrcsis rc.gions [18]

six different states. As long as the current positio]l is within the limits imposed by the deadbands, the

dca(lband constraints arc satisfied and no jets will be commanded to fire, Figure 4 gives an explanation

of the cliffcrcnt states in which the Shuttle can bc while it is Clcmdbanding [19].

2’IIc rcquir’cmcmts for the Phase_Plane module are described in

simplified wiring diagram (see l’igarc 5), which identifies tllc input

tables describing the calculation for the boundaries of the phase

IIistorical reasons, the FSSR descriptions use notation commonly

the l“SSR document that includes a

and out put values, as wdl as several

plane and its diflkrent regions. For

userl for circuit design, evcm though

the system being describcxl is software-based. The solid lines rcprcscnt data flows and dashed lines

represent control. In Figure 5, the dashed line indicates that the cna151e flag must be set by the crew in

order to cn able

3 . 2 Fornlal

the autopilot mode.

Specifications

‘1’hc software was formally specified using the 1’VS (1’rototype Verification Systems) terminal-based,

forma] spcc.ification tools [20] (e.g. syntax checker and theorcm prover), which are under continuing

development at SRI lnternationa]. A 1’VS specification comprises a collection of thcwies. Ikch theory

1!

2,

3.

4.

5.

6.

No jets flrc, Since the rate error is positive, the attitude error will grow in a positive
direction,

Jc!tsfirctonu]lify the positive rotationa] rate.

Jets stop firing when the dcadband]inc is crossed, but a little negative rate errors is
inevitable..

No jets fire. With a negative rate error, the attitude error will also drift ILcgativcly.

Jots fire to nullify negative rate error.

Jets stop firing, but rcsidna] positive
again and tile cycle repeats.

Figure 4: Explanation

rate error causes attitude error to go positive

of dcmdbanding states [19]

consis ts of a signature for the type names and locally dcclarcd constants , as WCII as the axicmls,

definitions, and theorems associated with the signature,

in order to obtain a specification of the high-level requirmne.nts from the existing documentation and

s o u r c e code, several layers of sl)ccifications were constructed, whcwc cdl layer is more al~stract than

the prcccxling layer. Spcciflcation of a. system through increasingly detailed levels of abstraction is a,

tvcll-cstal}lisllc(l method [7, 21]. 11’rom tile forward cmgilicwring perspective, the software development

process proceeds in a top-down fashion. Typically, abstract, IIigh-level specifications arc used to establish

tlic system inputs, outputs, and basic functionality; critical correctness requircmncnts that the system

must satisfy arc stated at this level and become the criteria by which the specification is judged to

be correct, Mid-]cvel specifications introduce details of functionality and data structure requircmcmts

that may constrain thcevcntual illll)lclllclltatioll ofthc system; cllallg(!rc[lllcstsfor modulm will most

likely be addressed in these specifications. A 10W-1CVC1 slmcificatioa is astraightforwa.rd representation

of a particular ilnl)lelllclltatioll, which may be used to automatically generate source code [8, 17] or

vcrific.ation conditions forl]rograllllller-lJroclllcc(l code [1],

Il~col~trast,l ~crforl~lillgr cvcrsee l~gi]lceril~go ftl~cPhaseYlanel ~rojcct, il~volvc(l amixturcofbottonl-

up with a top-down approach. ‘J’his project exp]orcxl the use of formal specifications to derive require-

mcmts that arc more detailed and I)rccisc than an English paragraph, a.lld less obscure than optimized

sourc,ccodc. specifications wcrcdcvclopcxl in tllefollowillg ordm: low-, high-, and mid-level, IIigh-level

natural language descriptions of this portion of the Shuttle 11A]’ were available, as was source code.

enable

previous thruster commands

rate error

attitude error

deadband limits

rate limits

L

Control Logic

for

Phase Plane

I
I
I

!
I
I
I
I

OFF

1091Iw5: s implif ied wiring tliagralll fortllc PhaseYlane]no(ll~lc [18]

Given the two types of documentation that varied in tile amount of detail, we started with the low-level

spcxific,ations to ensure that an accurate description of the current functionality was captured. Next, we

used the hi.gh-lcwc] descriptions from tl]e Crew ‘1’raining ManuaJ and constructed several OM’I’ diagrams

to assist in the spcciftc.ation of high-level requirements. Finally, in order to bridge the information gap

bet wccn the low-level, illllllclllclltatioll- sl)ecific. and the high-lcvc] specific.ations, we constructed a set

of mid-level specifications.

specifications, and we used

overall c.omponcmt in order

~Te ~lscd t]l~ oh~q” {liagral,ls to intro[luce al~straction in to the 1ow-]CVC1

he high-level slmc.ific.ations to identify critical properties applicalj]c to the

to construct the mid-lcvd specifications. ‘l’hc remainder of this section

dcscrilms in mom detail the specification process and includes example specifications.

l’he low-level formal specification of Phase-plane was developed from the existing source code,

tile Crew ~laining Manual [19], and the low-level wiring diagrams, q’his specification mirrored the

func.tiona]ity of the existing systcm, b u t did not Ofrcl an al~stract view

rcquircmcmts. Due to space c o n s t r a i n t s , 1110 low-level specifications arc

of the module’s functional

omitted but can be found

in [22].

A high-level “black-box” specification was thcm dcwclopcxl, which did not inc]udc illll)lclncl~t:itiol~

details. At this level, it was straightforward to state abstract properties that any software implementing

Phase-Plane must possess . ‘l’lie hi,gh-lcve] spccificaticm describes properties t h a t charactcrim t h e

Shutt le’s posi t ion in terms of attitude and rate deadband values. If tllc Slluttlo travels ou t s ide the

specif ied regions, then the jets need to be fired to bring the Shuttle back into the phase plane rcgi.on,

Several data types were specified in the 10W-1CVCI specifications and are used for both the high- and

n~id-lmwl spccifica,tions; they arc given in l’igurc 6 for c,larity purposes .

nonnegative-real: TYPE = {x: real! x >= O}
rate-error- type: TYPE = real x unite are degrees/second
rate-deadband-type: TYPE = non_negative-real
attitude_deadband_type: TYPE = non-negative-real
attitude-error-type: TYPE = real X units are degrees

I’igurc6: IIatatypcsuscd for spcw.ificationsof tlLcPhase_Plane module

Afc:wl~rc(licatesa reclcfil~c(l to flcscril)e gcl~cral l)rolJcrticsof tl\c Sl]llttle, wllcrcllooleal~ predicates

arc dcnotd by a “?” suffix, and the types of the prcxlicatc arguments arc cnc.loscx] io square brackets,

]Pirst, the is-deadbanded? predicated ctcrmincx \\~llctllclt]lcSllllttleisil~ a(lea(]l}all(lil~gst ate,w]lcrc

tllcrc arc four argumcmts to the predicate corresponding to the attitude dcadband, rate dcadband,

current attitude error, and current rate error rcprescmted by their rcspcctivc types.

—.
is-deadbanded? : pred[attitude-deadband-type ,rate-deadband-type,

attitude-error-type,rate-error-type]— I

Next, twoprcdicatcs arcdcfinrd toc.hcc.k ~vll{!tllellatea]~(l attitll(lcclrorsarcil~ aregion where jets

IIccd to befircd to dccrcasc rate error (gmlcratc positive! rate error).

decrease-rate-error? : pred[attitude-deadband_type,rate-deadband_type,
attitude_error-type ,rate-error-type]

increase-rate-error? : pred[attitude-deadband-type,rate-deadband_type,
attitude-deadband-type ,rate-deadband_type]

l~ig111c7c o:~tail~sal ~al~brcviate(l versiol~oftl~c tol)-lcv(!] sl)ccificatiolls. lnthisc .asc,wi ring-phase-p].ane

rcfms to the low-level specifications. g’hcrefcrcncml statcsa letllosc(l el~ic.te(lill 17igurc3.

IIascdon thcspccification forthcsix states, tllcfollowin ghigh-lcwcd axiom wascollstrllctc(lt orclate

tllc attitude and rate dcadbands, as well as the ratcand attitudccrrors. Specifically, thcaxiom asserts

that ifthc Shutt]eis in the dcadband regions, tllcm thcreis nonwxl to fire jets to incrcaseordccrcase

*98*89,9*89*,,*, *998 ea*, e9, ,*, ,* ,,, ,,, ,, ,6,,,,,, ,,, ,,, ,,, ,,, ,,88 *, ##,,,*,*,,,*,llllll//////f/l ////l /l f///l lfffll/llfl//ll lllll//lfll///l lfl//f/f////l// llff//f,,, ,, ,0,,,,,, ,,, ,,, ,,, ,,, , ,,, ,,, ,,, ,,, , * **,,,*,,,,,, ,,, ,,, ,,, ,0,, ,,, ,0,,,,,,,, 0

)!
% Module: High-Level Specifications of Properties for Phase Plane Module
x
% The following characterize the 6 states of Shuttle when it is deadbanding
x
* , * , , , , * ,, , , * , * , ,, , ,, ,, , * , ● * * ,, , ,, , , , , , , , , ,, , ,, ,, * ,, ,, , ,, , ,, ,, , , , ,, ,,* ,, , ,, , , , ,lll/f//f/llllff ff/f/f/f/fll//l fl////f/////l/f f// fll/l//l/flll/f fff/ff//ffff//ff, , * , , * * , ,, , , , ,, , ,, * ,, ,, * , * ,, , ,, * , * * * , , * ,, , ,, , ,, ,, , ,, ,, , ,, , ,, ,, , , , , , * ,, ,, , ,, , * * *
high-level-phase-plane: THEORY
BEGIN
USING uiring.phase-plane % low-level specifications for phase plane

x
B**99#a** #9a 9*9* 9#**99 ##a* **99,*,* 6,##,* *11 ****19**,,, ***, ,, **#*#a,, **,6* 6#**/ll/f/ll/ff/f/l /l/lllf/////fff /// fl///lllfl///// /f ff////lfflll/l/ /l ff/l///ll/fl, * * * * , * , * * , ,, , , , ,, * , , ,, , * , , , , ,, , ,, ,, , , , , , , , , , , * , , , , , ,, , , , , ,, ,, , ,, , , , , * * , , ,, , , * *
1!
X No jets fire. Since the rate error is positive, the attitude error will
!! grow in a positive direction. (State 1)
x
no-jets-positive-rate?(att-db,rate-db,att-err,rate-err) : bool =

is-deadbanded?(att-db,rate-db,att-err,rate-err) k
rate-err > 0 & att_err > 0

1
X Jets are firingto correct positive rotational rate (State 2)
%
jets-fire-correct-pos-attitude-error? (att-db,rate-db,att-err,rate-err) :bool =

NOT (is-deadbanded?(att-db,rate-db,att-err,rate-err)) &
decrease-rate-error?(att-db,rate-db, att-err,rate-err)

1!
% Jets stop firing when deadband line is crossed, but a little negative
X rate error is inevitable. (State 3)
1
jets-stop-negative_rate_error?(att-db,rate.db,att_err,rate_err) : bool =

is-deadbanded?(att-db,rate-db,att-err,rate-err) &
rate-err < 0

%
% No jets fire. With negative rate error, the attitude error will also
X drift negatively. (State 4)
%
no-jets-negative-rate?(att-db,rate-db,att-err,rate-err) : bool =

is-deadbanded?(att-db,rate-db,att-err,rate_err) &
rate-err < 0 & att-err < 0

%
% Jets are firing to correct negative attitude error (State 5)
x
jets-fire-correct-neg-attitude-error?(att-db,rate-db,att-err,rate-err) : bool =

NOT (is-deadbanded?(att-db,rate-db,att-err,rate-err)) &
increase_rate-error? (att-db,rate_db, att-err,rate_err)

x
% Jets stop firing, but residual positive rate error causes attitude
~ error to go positive again and cycle starts over (State 6)
9!
1,

jets-stop-positive-rate-error?(att-db,rate-db,att-err,rate-err) : bool =
is-deadbanded?(att_db,rate-db,att-err,rate-err) &
rate-err > 0

. . .

end high-level-phase-plane

11’igurc 7: Samplchigh-lcwcl sl)ccifications of Phase-Plane

the rate error,

AXIOM FORALL
(att-db:attitude-deadband.type) ,(rate-db:rate-deadband-type),
(att-err:attitude-error-type), (rate-err:rate-error-type):

is-deadbanded?(att-db,rate-db,att-err,rate-err) <=>
NOT (decrease-rate-error?(att-db,rate-db,att-err,rate-err) OR

increase-rate-error?(att-db,rate-db,att-err,rate-err)

)

lPinally, amid-level forma] specification wasout]incd tocapturecritica] aspects of functionality and

rcquircmcnts at alevel that would bc useful to Sll~lttle r{:(l~lircl~lcllts analystswhcm reviewing proposed

modifications to the module. Code dcwclopcxl from this specification would implement the “Phase

l’lancl,ogic’) boxofthclow-level wiring diagram (I~igurc 5). ‘.l’hecllallcnge atthemid-lmd wastoornit

extraneous illll)lclnclltatioll details, yet be prccisc cmough to capture necessary properties concerning

minimization offucd usage, thrustmf irings, and movmncmt al)out the desired attitude. In constructing

tllcmid-level slJecific.atio] ls,scvcrala ssllllll}tiolls\ vereI1laCle. l+’irst, noexternal accclcwation disturbances

were taken into consideration. ‘1’his assumption means that by taking advantage of symmetry, it is

sufficient to specify only t]lc upper (nonnegative rate error) IIalfoftllc Phase_Plane diagram, as shown

in l’i.gurc 8. Second, the hysteresis region was treated as a coast region. l’inally, the specification d o t s

not explicitly state that the software implmncmtation is cnablml by af lag set by the crew, nor does it

statccxplicit]y tl~attlle calc.lllatiolls will I)c(lollcollccforcacll axis (roll, pitc]l, and yaw),

In addition to those types already defined in the low-lcwel specification (SCW Figure 6), new types

were introduced in the mid-level specifications to represent absolute rate errors, thruster commands,

and thruster accchmation types. l“igurc 9 gives the specification ofnew type declarations and external

inl)utse

Afcw~ltility flll~ctiollsa re(lcfil~c{l to simplify tlicsl~ccificatiolls: absol~ltcv al~lc,s (J~larc,all(l sign.

~:’::l:NDIF ---2]

Next, inl~igurelO, wc{lcfil~e afe~v{lca(ll~all(lil~g fl]llctiolls,~vllelc wctakeadva.ntage ofthe symmetry

and yrol)rcscllts tllevcrtical axis (al~solute value ofratecwror) and * is the horizontal (attitude error)

axis . q’hesylnlnetry l~rol)crty el]al]lcs llstogellcralizc tllccalc(llatiol~s to thosein tllclll)~)crhalfofthe

+ rate error

Rate_ Deadband t
Y

Lower_

Lo e_ Limit

+ attitude
x

error

Lower_Attitude_Li mit I

Coast Region

n Hysteresis Region

l“igurc8: lJppm IIalfof l’llasc Plane

dcadband region. ‘1’he adjust-for-symmetry function accounts for symmetry of tl(c phase plane and

returns the new thruster command given the current rate error and thruster command. l’hc calculations

for upper-attitude-limit and lower -attitude-1 imit are a generalization of a portion of the low-

level spw.ificatio:lse l’hme limits determine the bounds of the hysteresis regions, and, as mentioned

prcvious] y, are a function of t,hc jet firings.

q’he tail of the coast region is dcfincxl by the rate-deadband above and tile lower-rate-deadband

hclow. ‘1’hc lower-rate-deadband is typically O, 6*rate-deadband []8]. ‘l’he following specification

gives the lower-rate-deadband as a rcaj and asserts that the lower-rate-deadband is at most the

rate-deadband.

——
lower. rate-deadband: real
rate-de adband_relationship: AXIOM lower-rate-deadband <= rate-deadband 1

‘J’llc lower (left) boundary of the coast region is ddi])cd by the lower-attitude-limit (a function dc-

c.larcxl bc]ow) and a t t i t ude -headband . ‘1’he lower-coast-limit is typically lower-attitude-limit - 0. 2xa

‘1’hc spcc.iflcation asserts only that the lower -coas t - l imi t i s at Inosi, the lower-attitude-limit.

lower-coast-limit: real
coast-limit-relationship: AXIOM lower-coast-limit <= lower-attitude-limit I

‘J’lle IIrilnary function control-action returns a tllrustcr colnmando ‘J’hrustcr hysteresis can be

i
TYPE DECLARATIONS
,,L

abaolute.rate-error-type: TYPE = non-negative-real
thruster-command-type: TYPE = {positive-thrust, zero-thrust, negative-thrust)
thruster-accel-type: TYPE = non-negative-real

%
X External Inputs
x
% Rate and attitude deadbands characterize the desired bounds.

x
rate-deadband: rate-deadband-type
attitude-deadband: attitude-deadband.type

x
I Thrusters generate a constant acceleration during a firing period.
x

thruster-impulse: thrust.er-accel-type

x
I Rate and attitude errors are determined by on-board sensors.
z

rate-error: rate-error-type
attitude-error: attitude_error-type

Figure9: Variableand tyl~e[leclaratiolls forlni[l-level specification

used to minimize thruster firings due to delays, sensor noise, or movement between state transition

boundaries. At this lCVCI of abstraction, the hystmxwis zone is treated the same as a “coast” zone.

Figure 11 gives the specification for calculating the thruster comlnands. l’irst, it must be determined

if the spacecraft is outside the dcadband area and t]lrustcrs should be fired “downward”. Second, it

must bc determined whcthir thespacccraft is outside the dcadband arcaand thrusters should bcfircd

“upward’).
‘J’bird, if the spacecraft is within the “coast” zone, then do not fire thrusters. If all the above

cases do not apply, then incorporate thruster hysteresis.

3 . 3 C o n s t r u c t i o n ofOM’I’ Diagranls

Since the original Phase-plane software was not ol~jc?c.t-oricl~tc(l, the OM’1’ analysis began with the

source code and illll~lcl~lcl~tatioll-slJccific wiring diagram ofthc pha.se~lane I11o(1u1o and rcslllt~cl in

two levels of data flow diagrams. l’hcsc dia.grains assisted in the abstraction process to obtain an

a,rchitcctural view of the phase plane as it dated to the overall DAP system, thus leading to the

construction of the object models. Using the functional and object diagrams in conjunction with the

description of the deadbanding states, wc created tllc dynamic modc!l for the PhaseJ?lane module,

‘1*I]c dynamic model depicts the statcshetwccm jet firings as the Shuttle dcadbands. A high-level of

.,
l!!
~ Calculate coordinates for plotting attitude and rate errors
‘1!
y: absolute-rate-error-type = abs(rate-error)
x: real = sign(rate-error)xattitude-error

!! Because all calculations are done in the upper half of the deadband
~ region, the calculated thruster command may need to be reversed.

adjust-for-symmetry(t: thruster-cornmand.type,

IF (t =
THEN
% re
ELSE

re: rate-error-type) : thruster-command-type =
zero-thrust) OR (sign(re) >= O)
t
was negative, so thruster commands must be reversed
IF t = positive-thrust

THEN negative-thrust
% t was negative-thrust
ELSE positive-thrust

ENDIF
ENDIF

x
% Calcrrlate boundary of hysteresis region based on a functionof jet firings
x

upper-attitude-limit: real = -sqr(y)/(2*thruster-impulse) + attitude-deadband
lower-attitude-limit: real = -sqr(y)/(2*thruster-impulse) - attitude-deadband

l’igurc 1 0 : Varial]lcsa l~cl(lea(ll~al~clil~gf~ lllc.tiol~s to a(ljllst for syllllnctryil~ phascp l a n e

spcc,ific.a,tjons was~c]lerate[l~a,se(l on thedyna,lnjc model. ‘1’heobject and the functiona] models offered

one love] of abstraction, t]lus lcadjng to the dcwelopmcnt of the next layer of formal spcc.ifications

(mid-level spcxificatjons dcscribjng data structures and operations on the data strucl,ures),

‘1’l~erclllajl~(lerof tlljsscc.tjol~(lescril~cs tile OM’1’[liaglallls col~str~lctcd(lllril~g tllcreversccllginecril~g

and forma] specification process.

3 . 3 . 1 F u n c t i o n a l M o d e l s

IIata flow diagrams (lII’l)) facilitate a high level understanding of systmns and are used in both forward

and rcwerso engineering. Static analysis of program code provides information that accurately describes

flow of datain asystem. Process “bubbles” denote procedures or func.tion sofa given system, arrows

represent dataflowiagfrom one process to another, and rectangles represent external entities.

q’he s implest funct ional model is a context diagram, or l,cvel O DFII; the J,eve] O I)FII for the

Phase-plane module is shown in Figllre 12, wllel’e tl~eelltircl)llase l~lal~cl llo(l~llej srecll~cc(ltoa process

bubb]e, with the external jnput and output labeled. ‘J’lIc IJevel O 1)1”1) closely rescvnbles the structure

ofthc wirilig diagram for Phasellane given i n l’igure 5.

thruster-hysteresis: thruster-command-type = zero-thrust

control-action: thruster-command-type =
IF (y > rate-deadband) OR (x > upper-attitude:limit)

THEN adjust-for-symmetry(negative-tlmust, rate-error)
ELSE IF (y < louer-rate-deadband) ANO (x < louer-coast.limit)

THEN adjust-for-symmetry(positive-thrust, rate-error)
ELSE IF (y <= rate-deadband)

AND (lower-rate-deadband <= y)
AND (x <= lower-attitude_limit)

OR (x <= lower-attitude-limit)
AND (lower-coast-limit <= x)
ANO (lower-rate-deadband <I= y)
THEN zero-thrust
ELSE thruster-hysteresis

ENDIF
ENDIF

ENDIF

l’igurc 11: Sl)cw.ification of l’unc.tion to ~alc.ulatc ‘1’hrust ~om]nands

l~igurc13givcs the next lmdl)l’]), whirhshowsthc (lifrere]~tl)rocesscs that constitute thcPhasellane

module. As shown in this figure, the input variables are used to c.a]culatc boundaries for the phase

plane. ~llebo~ll~[laries,t l~eattitll{le deadband al~(ltller ate[lca(lbal~{l,are s~ll)l>lied to the Phasellane

modulq, which c.alculatcs thruster commands (jet firings). ‘J’he thruster commands arc then supplied

to the Jet_Select m o d u l e

desired thrustw effect.

3 , 3 . 2 Object M o d e l s

that dc.terlnincx which comltination of jets should lM used to achieve the

lhwlopmcnt of thti as-built layer of specifications, the I) FI)s, and the requirements document for

Phase_Planelcd to thcdevclopmcnt of anobject model f’ortlie Phase-Plane.

l’igurc 14 depicts ahigh-lcvc] object]nodc] for tllc cmtirc I)Al’, consisting ofthc State Estimator,

Phase Plane, and the Jet Select c.lasses, corresl)onding to tllc diagra]n given in Figure 2. l;ach class

consists ofthrcw parts corresponding to the name ofthc class, list ofattributcs, and list of operations,

rcspcctivc]y. ~hc diamond syml)o] demotes aggregation, whcwc the class above the diamond is said to

consist ofthc three classes below the diamond. lfeithcr attributes or operations arc not known (or do

not exist) for a given class, then the corresponding area is shaded. q’hc Phase Plane class uscs the class

Crew Supplied Information, which rcprcsmlts the dcadl)a]ld limits that arc used in the calculation of the

External

Input

Variables

~revious thruster commands

rate error

attitude error
Jet Select

attitude deadbands

rate deadbands
/

Figure 12: High J,mwl (0)llFl) for Phasellane Module

IJhasc plane boundaries.

Figure 14 also contains the object diagram for tile Phase Plane c.lass,with attributes rate crwr, attitude

CWW, and rotation axis. ‘l’he operation for this class is crllculate ilwvst cmnnmnds, based on the difference

between the current rate and attitude error values and those respective limits supplied by the crew.

l’hc fillcx] circle attached to the Phase Plane class, indicates that the I) Al’ contains three phase plane

components, one to calculate different thrust commands for each of tllc spcciflc rotational axes: roll,

pitch, and yaw. q’here are two components for each Phase Plane class, Coast Region and Hysteresis

Region. in the coast region, only the values of tho attitude and rate errors arc used to determine

whether tile Shutt]c is still within the deadband limits. In the hysteresis region, however, additional

information, such as fuel usage, sensor noise, and other spacecraft dynamics, is used to calculate thrust

commands,

3 . 3 . 3 Dynanlic Moclels

l’orconlpletcmcss sake with respect tothrec nlodcdso fOhl’I’,thi sscction gives tllc{lyl~alllicl~~odelsfor

tllc phase plane, which descrihcs the states in which the 11A]’ can lJC with respect to the Phase-Plane

component. Also included are the transitions that take tllc I) Al’ from onc state to another. A pictorial

diagram of the position of the Shuttle is given in l’igure 3. Since the Phase_Plane module is an evcnt-

bascd systmn, the state transition diagram is straightforward to construct.

, previous thruster commands
I t \

External

Input

Variables

rate error

Calculate Boundaries
attitude error

attitutde deadband

/
rate deadbands / I commands

F 4

l’igum 13: IXWC1 1 1111’1) for Phase-plane

nJet Select

Module

Mo(lulc

Figure 15 gives a statcxhart depiction of the states through which the Shutt]c transitions while it

is dcadbanding. q’hc state transitions are in the form of jets terminate (begin) firil[g and the Shuttle

drifting in (out) of the deadband region.

Note that Figure 3 depicts the clockwise traversal of the states in which the Shuttle cycles through the

dcadband limits. It is also possible for the Shuttle to traverse the cycle in a counterclockwise fashion,

in which case, the arrows in F’igure 15 would be rcverscxl.

l’inally, a very high-level view of the states in which the Shuttle can be is given in l’igyre 16. Included

in the diagram are the actions or conditions that cause the Shuttle to transition from one state to the

next: jet firings and clrift. ‘J’he rectangle containing “1’ham l’lane” and the labeled arrows pointing to

the states indicate that the state

4 Lessons Learned

transitions describe the Phasellane module.

q’he results from this reverse engineering project have provided several lessons for the overall Space

Shuttle project as well as for future reverse engineering projects. l’irst, in order to obtain high-level

requirements for existing software, it is clifficu]t to obtain the specifications (formal or informal) in

asingle step. Instead, several layers of specifications should be developed, starting with the as-built

m

wTurn on
Turn off

M tEzil t-l Upper Attitude Limit

1===1
I Fuel Usage

Sensor Noise
SDacecrafl Dvnamics

F’i.gure 14: Object Jnodc] for DA]’

specification, IIy closely mirroring the programming structure of the existing software, this specification

provides traceability through the diffcrcmt]cwcls of specifications.

Second, forma] specification languages and their corresponding reasoning systems provide a framework

for integrating disparate sourc.cs of project inforlnation to dcxcrihe a systeln at]nany levels of detail.

‘1’hc project information may be documcatwl in a variety of formats, froln different sources, and

sul>je.ctwl to varying levels of forma] review. Ii’or this particular projcc.t, information was obtained

from illll)lc:lllelltatlioll-sl~ccific wiring diagrams, definitions and instructions from a crew training manual,

source code, informal design notes, and discussions with shuttle software personnel. q’he information

was analyzed and distilled into spcc.ifications and 0h4’J’ diagrams. The I’VS proof system provided a

mechanism for checking the c.omplctcness and consistency of the specifications.

‘1’bird, the benefits of ob jcct-oriented analysis can be exploited for rmwrsc-cngi nccring as well as

forward cmgincwin.g projects. Spcc.ifica]ly, object-oricllte.d analysis assists in the understanding of

large, complex systcvns, l“urthcrmore, an object-oricmtcd pcrspcctivo facilitates future modifications

fire jets
positive attitude drift

b

stop firing stop firing

negative attitude drift

l“igurc 15: StatcsrelJrcsclltillg thee lockwise dcadbanrling of tllcl Slluttlc

by providing the rcxluircmcnts analyst and the dcmloper with a IIi.gh-lcwcl, abstract view of system

C.olnponents.

Fin all y, a. process consisting of the construction of a level of formal specifications, followed by a set

of corresponding diagrams, is nccdcxl to devcdop several layers of specifications for an existing system.

‘1’hc diagrams introduce abstractions that can be used to guide the construction of the next level

of specifications. Furthermore, the thrm complementary notations in the OhlrJ’ approach cnaMe the

Is deadbanded

-

Phase Plane Module drift fire jets

Outside Deadband Region
is not deadbanded

lrigurc 16: lIigh-level states for Orhitm with respect tothe Phase_Planenlodule

specifier to represent different

s Conclusions and

components of the system using the

Future Investigations

Imst-suited type of diagram,

Using formal

Phase-Plane

specifications ancl object-oriented analysis to dcscrilw tllc software that implements the

module of the Space Shuttle DA]’ has demonstrated that these complementary analysis

and dcvelopmrmt techniques can be used for existing, inclustria] apl)lic.ationso Constructing the diff’crcnt

lcnwls of specifications, with increasing abstraction , supldmncmtcxl by the OMq’ diagrams provided a

moans for integrating different types of information regarding the Phasellane module from disparate

sources. IIaving access to the formal specifications and dia,gra,ms will facilitate the verification that the

original (critical) requirements or properties are not violated by any future changes to the software.

in addition to facilitating verification tasks, the formal specifications can bc used as the basis for

any automated processing of the rcquircmcmts, including checks for c.onsisten cy and completeness,

interaction with the requirements ana~yst and other mcmbcm of the original dcwelopmcmt team for

tile projcd strongly support the conclusion that the sljecific.ation construction process is useful to the

ovcra~l software dcvclopmcnt and m ainknance processes of legacy (safct y-crjtical) systmms [15].

k’uturc investigations will continue to refine the mid-level and high-lcwe] specifications and develop

theorems to relate the lCVCIS of specifications, We are also investigating the formalization of the OM’I’

diagraming notation, which will provide a means for using automated techniques for extracting formal

specifications from the OM’I’ diagrams jn order to fiat.ilitate tllc specification procms [23]. Furthermore,

extracting the specifications directly from the diagrams will enable us to reason about the complctcnms

a n d consistcmcy of the diagrammcd systcm,

maint cnance phases of software dcnwlopmcmt.

tl]us facilitating the rquiremcnts analysis, design, and

6 Acknowledgements

Scnmral pcop]c have provided valuable informatioli and assistance during the course of tile project.

Spcciflcally, wc would like to thank Rick Covington, l)a.vjd 11 amilton, John l{elly, Philip McI{jnley, a,rl(l

John]{llshby.

Refcwcnce herein to any specific commcrc.ial product, process, or scrvicc by trade, name, traclcmark,

manufacturer, or ot,hcrwise, does not constitute or imply its cmdorscment by the United States Govern-

mcmt or the Jet J’ropu]sion I,abora.tory, California, Institute of ‘1’echno]ogy.

References

[]] J. Rushby, “Formal methods and the certification of critical systems? Nchnica] Report SIU-CSI,-
93-07, SRI International, Computer Sc.iencc laboratory, 333 Ravenswoo(l Ave., Menlo l’ark, CA
94025-3493, November 1993. Available via anonymous ftp from f tp, CS1. sri. corn.

[2] N. G. l,cveson and C. S. ‘1’urncr, “An investigation of the ‘1’hcrac.-25 Accidents,” l~~li’~ C’ornpuier,
pp. 18-41, July 1993.

[3] 1’. G. Neumann and contributors, “l{isks to tllc public,>’ in Software Engincwing Noks, A C M
Special Interest Croup on Software l’lngincering,] 993.

[4] Aeronautic.s and Space lhgiuccring IIoard National Research Council, An Assessment of Space
Shultlc Flight SojtuKIrw IIcwlopmcd l’raciiccs. National A cadcm y l’rcss, 1993.

[5] R. A. l{cmmmcr, “lntcgrating Forma] Methods into the 1 hwclopmcmt Process,” ll;lll~ Sojtwam,
pp. 37-50, September 1990.

[6] S. Gerhart, D. Craigen, and q’. Rakton, “~xpcriencc with l’ormal Methods in Critical Systems
and I@ulatory Case St u dies,” l~~k’~j Software, vol. 11, January 1994.

[7] J. M. Wing, “A Spcc.ifier’s introduction to l’ormal Methods,” IJJJ;I’I Computer, vol. 23, pp. 8-24,
Septcmbm 1990.

[8] 11.11. C. Cheng, “Synthcxis of l’roccxlura] Abstractions from Formal Sl)ecifications,” in I’TOC. of
COMPSA (7’91, pp. 149-154, Scq]temlmr 1991.

[9] lt. J. Chikofsky and J. 11. Cross 11, “Rcwcwse Ihgineering and Design Recovery: A ‘I%xonomy,”
IIlli’lj Sojtwurc, January 1990.

[10] 11, J. Ilyrnc and D.A. Gustafson, “A Software Rcwmgincwring Process h40dcl ,“ in Proceedings oj
COM1’SA C“92: ComIMkr Soflworc ond App/icoliof~s Confcrc:ncc, pp. 25-30, September 1992.

[11] 1]. 11. C. Cheng and G, C. Gannod, “Constructing formal slmcifications from program code,” in
l’roc. of Y’bird lnk:rncltionul Cotifcrcncc: on ~bols in A rtificiul lntclligcnce, pp. 125-128, November
1991.

[12] G, C. Gannod and 11.110 C. Chcwg, “A two-pllasc approach to rcwersc cmginecring using formal
Inctlho(l s,” Lecture Notes in Computer Science, 1’roc. of l“ormol Methods in Programming and Meir
Applications Conference, vol. 735, pp. 335-348, June 1993.

[13] G. C. Gannod and }1. 11. C. Chcmg, “1’acilitating the maintenance of safety-critical systems,”
]nt. J. of Soflumrc Lhginccring und Knoutlcilge Engineering, vol. 4, no. 2, pp. 183-204, 1994.

[14] J. C, l{clly, R. G. Covington, and D. IIa]nilton, “Results of a forma] mc.thods dcmonstrajtion
project ,“ in l’roc. of WESCON (to oppcar), (Anal lcim, California), September 1994.

[15] Jet Propulsion I,almratory, Johnson Space Center, and I,angloy Research CCWter, “Formal Methods
IImnonstration Projccl for Space Applications:]’base 1 Case Study: SW3 Orbit DAP Jet Select.”
IIcccnnber 1993.

[16] J, Rumbaugh, M, IIlaha, W. l’rcuncwlani, l’. llldy, and W, J.orcnse.n, (lbjcct-(hknted Modeling and
Design, l;;nglewood Clifrs, New Jersey: l’rcntice IIall, 1991.

[17] 11. 11. C, Cheng, “Applying formal methods in automated software development,” Journal of
Computw and Software Engineering, vol. 2, no. 2, lq~. 137-164, 1994.

[18] “Space Shuttle Orbiter Operational l,evcl C Functional Subsystcm Software Requirements:
Guiclance Navigation and Control -- l’art C Flight Control Orbit DAP,” ~ec.h. ltep. 01-21 edition,
Rock well international, Space Systems Division, I’cbrwary 1991.

[19] S. IIeck, “G& C Systems ‘1’raining Manual: Guidance and Flight Control - Insertion, Onorbit and
l)eorbit,” q’ech. llep. 1/0/1) G&C21 02, Mission Operations l)ircctorate, ‘1’raining Division, Flight
‘J’raining]Iranch, October 1985.

[20] N, Shankar, S. Owre, and J.]tushby, “q’he 1’VS specific.ation language and tools,” technical report,
Computer Science laboratory, 333]lavenswood Ave., Menlo Park, CA 94025 -34!)3, 1993. Available
via anonymous ftp from ftp, csl. sri, corn.

[21] C. 11. Jones, Sysihvnatic SojtuM~c Jkwclo~ntcnt ZJszkg V1)M. Prentice IIall internat ional Series in
Computcw Science, l’rcntice IIall lntcrnationa] (lJ]{) I,td., second cd., 1990.

[22] 1]. 11. C. Chcng and 11. Aucwnl,eimcr, “Applying l’ormal Methods and Ol~jcct-Oricntccl Analysis
to the Existing Space Slluttlc Software,” ‘‘Jcchnic.al Report C1’S-94-9, Mic.higall State University,
lkqmrtment of Computer Science, A714 WC1lS llall, Uast l,ansing, Michigan 48S24, 1+’elmla~y 1994.

[23] 1/. 11. IIourdeau and 11.11, C. Chcng, “A formal semantics of object models, “ I’cchnica] Report
MSU-C1’S-94-6, llepa~tlmwlt of Computer Sc.icnce, Michigan State lJniversity, A714 Wells IIall,
llast l,ansing, 48824, January 1994. (submitted to llj~;ll ?’runs. on Sojlwarc Engineering.).

